Details


CHAPTER 1 Introduction 1
1.1 What and How? 
1.2 Physical Origins and Rate Equations 
1.2.1 Conduction 
1.2.2 Convection 
1.2.3 Radiation 
1.2.4 The Thermal Resistance Concept 
1.3 Relationship to Thermodynamics
1.3.1 Relationship to the First Law of Thermodynamics
(Conservation of Energy) 
1.3.2 Relationship to the Second Law of Thermodynamics and the
Efficiency of Heat Engines 
1.4 Units and Dimensions 
1.5 Analysis of Heat Transfer Problems: Methodology 
1.6 Relevance of Heat Transfer 
CHAPTER 2 Introduction to Conduction 
2.1 The Conduction Rate Equation 
2.2 The Thermal Properties of Matter
2.2.1 Thermal Conductivity
2.2.2 Other Relevant Properties 
2.3 The Heat Diffusion Equation 
2.4 Boundary and Initial Conditions 
CHAPTER 3 One-Dimensional, Steady-State Conduction 
3.1 The Plane Wall 
3.1.1 Temperature Distribution 
3.1.2 Thermal Resistance 
3.1.3 The Composite Wall 
3.1.4 Contact Resistance 
3.1.5 Porous Media 
3.2 An Alternative Conduction Analysis 
3.3 Radial Systems 
3.3.1 The Cylinder 
3.3.2 The Sphere 
3.4 Summary of One-Dimensional Conduction Results 
3.5 Conduction with Thermal Energy Generation 
3.5.1 The Plane Wall 
3.5.2 Radial Systems 
3.5.3 Tabulated Solutions
3.5.4 Application of Resistance Concepts 
3.6 Heat Transfer from Extended Surfaces 
3.6.1 A General Conduction Analysis 
3.6.2 Fins of Uniform Cross-Sectional Area 
3.6.3 Fin Performance 
3.6.4 Fins of Nonuniform Cross-Sectional Area 
3.6.5 Overall Surface Efficiency 
3.7 The Bioheat Equation 
3.8 Thermoelectric Power Generation 
3.9 Micro- and Nanoscale Conduction 
3.9.1 Conduction Through Thin Gas Layers 
3.9.2 Conduction Through Thin Solid Films 
CHAPTER 4 Two-Dimensional, Steady-State Conduction 
4.1 Alternative Approaches 
4.2 The Method of Separation of Variables 
4.3 The Conduction Shape Factor and the Dimensionless Conduction Heat Rate 
4.4 Finite-Difference Equations 
4.4.1 The Nodal Network 
4.4.2 Finite-Difference Form of the Heat Equation 
4.4.3 The Energy Balance Method 
4.5 Solving the Finite-Difference Equations 
4.5.1 Formulation as a Matrix Equation 
4.5.2 Verifying the Accuracy of the Solution 
CHAPTER 5 Transient Conduction 279
5.1 The Lumped Capacitance Method 
5.2 Validity of the Lumped Capacitance Method 
5.3 General Lumped Capacitance Analysis 
5.3.1 Radiation Only 
5.3.2 Negligible Radiation 
5.3.3 Convection Only with Variable Convection Coefficient 
5.3.4 Additional Considerations 
5.4 Spatial Effects 
5.5 The Plane Wall with Convection 
5.5.1 Exact Solution 
5.5.2 Approximate Solution 
5.5.3 Total Energy Transfer 
5.5.4 Additional Considerations 
5.6 Radial Systems with Convection 
5.6.1 Exact Solutions 
5.6.2 Approximate Solutions 
5.6.3 Total Energy Transfer 
5.6.4 Additional Considerations 
5.7 The Semi-Infinite Solid 
5.8 Objects with Constant Surface Temperatures or Surface
Heat Fluxes 
5.8.1 Constant Temperature Boundary Conditions 
5.8.2 Constant Heat Flux Boundary Conditions 
5.8.3 Approximate Solutions 
5.9 Periodic Heating 
5.10 Finite-Difference Methods 
5.10.1 Discretization of the Heat Equation: The Explicit Method 
5.10.2 Discretization of the Heat Equation: The Implicit Method 
CHAPTER 6 Introduction to Convection 
6.1 The Convection Boundary Layers 
6.1.1 The Velocity Boundary Layer 
6.1.2 The Thermal Boundary Layer 
6.1.3 The Concentration Boundary Layer 
6.1.4 Significance of the Boundary Layers 
6.2 Local and Average Convection Coefficients 
6.2.1 Heat Transfer 
6.2.2 Mass Transfer 
6.2.3 The Problem of Convection 
6.3 Laminar and Turbulent Flow 
6.3.1 Laminar and Turbulent Velocity Boundary Layers 
6.3.2 Laminar and Turbulent Thermal and Species Concentration
Boundary Layers 
6.4 The Boundary Layer Equations 
6.4.1 Boundary Layer Equations for Laminar Flow 
6.4.2 Compressible Flow 
6.5 Boundary Layer Similarity: The Normalized Boundary Layer Equations 
6.5.1 Boundary Layer Similarity Parameters 
6.5.2 Functional Form of the Solutions 
6.6 Physical Interpretation of the Dimensionless Parameters 
6.7 Boundary Layer Analogies 
6.7.1 The Heat and Mass Transfer Analogy 
6.7.2 Evaporative Cooling 
6.7.3 The Reynolds Analogy 
6S.1 Derivation of the Convection Transfer Equations
6S.1.1 Conservation of Mass 
6S.1.2 Newton’s Second Law of Motion 
6S.1.3 Conservation of Energy 
6S.1.4 Conservation of Species 
CHAPTER 7 External Flow 
7.1 The Empirical Method 
7.2 The Flat Plate in Parallel Flow 
7.2.1 Laminar Flow over an Isothermal Plate: A Similarity Solution 
7.2.2 Turbulent Flow over an Isothermal Plate 
7.2.3 Mixed Boundary Layer Conditions 
7.2.4 Unheated Starting Length 
7.2.5 Flat Plates with Constant Heat Flux Conditions
7.2.6 Limitations on Use of Convection Coefficients 
7.3 Methodology for a Convection Calculation 
7.4 The Cylinder in Cross Flow 
7.4.1 Flow Considerations 
7.4.2 Convection Heat and Mass Transfer 
7.5 The Sphere 
7.6 Flow Across Banks of Tubes 
7.7 Impinging Jets 
7.7.1 Hydrodynamic and Geometric Considerations 
7.7.2 Convection Heat and Mass Transfer
7.8 Packed Beds 
CHAPTER 8 Internal Flow 
8.1 Hydrodynamic Considerations 
8.1.1 Flow Conditions 
8.1.2 The Mean Velocity 
8.1.3 Velocity Profile in the Fully Developed Region 
8.1.4 Pressure Gradient and Friction Factor in Fully
Developed Flow 
8.2 Thermal Considerations 
8.2.1 The Mean Temperature 
8.2.2 Newton’s Law of Cooling 
8.2.3 Fully Developed Conditions 
8.3 The Energy Balance 
8.3.1 General Considerations 
8.3.2 Constant Surface Heat Flux
8.3.3 Constant Surface Temperature 
8.4 Laminar Flow in Circular Tubes: Thermal Analysis and
Convection Correlations 
8.4.1 The Fully Developed Region 
8.4.2 The Entry Region 
8.4.3 Temperature-Dependent Properties 
8.5 Convection Correlations: Turbulent Flow in Circular Tubes 
8.6 Convection Correlations: Noncircular Tubes and the Concentric
Tube Annulus 
8.7 Heat Transfer Enhancement 
8.8 Flow in Small Channels 
8.8.1 Microscale Convection in Gases
8.8.2 Microscale Convection in Liquids 
8.8.3 Nanoscale Convection 
8.9 Convection Mass Transfer 
CHAPTER 9 Free Convection 
9.1 Physical Considerations 
9.2 The Governing Equations for Laminar Boundary Layers
9.3 Similarity Considerations 
9.4 Laminar Free Convection on a Vertical Surface 
9.5 The Effects of Turbulence 
9.6 Empirical Correlations: External Free Convection Flows 
9.6.1 The Vertical Plate 
9.6.2 Inclined and Horizontal Plates 
9.6.3 The Long Horizontal Cylinder 
9.6.4 Spheres 
9.7 Free Convection Within Parallel Plate Channels 
9.7.1 Vertical Channels 
9.7.2 Inclined Channels 
9.8 Empirical Correlations: Enclosures 
9.8.1 Rectangular Cavities 
9.8.2 Concentric Cylinders 
9.8.3 Concentric Spheres 
9.9 Combined Free and Forced Convection 
9.10 Convection Mass Transfer 
CHAPTER 10 Boiling and Condensation 
10.1 Dimensionless Parameters in Boiling and Condensation 
10.2 Boiling Modes 
10.3 Pool Boiling 
10.3.1 The Boiling Curve 
10.3.2 Modes of Pool Boiling 
10.4 Pool Boiling Correlations 
10.4.1 Nucleate Pool Boiling 
10.4.2 Critical Heat Flux for Nucleate Pool Boiling 
10.4.3 Minimum Heat Flux
10.4.4 Film Pool Boiling
10.4.5 Parametric Effects on Pool Boiling 
10.5 Forced Convection Boiling 
10.5.1 External Forced Convection Boiling 
10.5.2 Two-Phase Flow 
10.5.3 Two-Phase Flow in Microchannels 
10.6 Condensation: Physical Mechanisms 
10.7 Laminar Film Condensation on a Vertical Plate
10.8 Turbulent Film Condensation 
10.9 Film Condensation on Radial Systems 
10.10 Condensation in Horizontal Tubes
10.11 Dropwise Condensation
CHAPTER 11 Heat Exchangers 
11.1 Heat Exchanger Types 
11.2 The Overall Heat Transfer Coefficient 
11.3 Heat Exchanger Analysis: Use of the Log Mean
Temperature Difference 
11.3.1 The Parallel-Flow Heat Exchanger 
11.3.2 The Counterflow Heat Exchanger 
11.3.3 Special Operating Conditions 
11.4 Heat Exchanger Analysis: The Effectiveness–NTU Method 
11.4.1 Definitions 
11.4.2 Effectiveness–NTU Relations 
11.5 Heat Exchanger Design and Performance Calculations 
11.6 Additional Considerations
11S.2 Compact Heat Exchangers 
CHAPTER 12 Radiation: Processes and Properties 
12.1 Fundamental Concepts 
12.2 Radiation Heat Fluxes 
12.3 Radiation Intensity
12.3.1 Mathematical Definitions 
12.3.2 Radiation Intensity and Its Relation to Emission 
12.3.3 Relation to Irradiation 
12.3.4 Relation to Radiosity for an Opaque Surface 
12.3.5 Relation to the Net Radiative Flux for an Opaque Surface
12.4 Blackbody Radiation 
12.4.1 The Planck Distribution 
12.4.2 Wien’s Displacement Law 
12.4.3 The Stefan–Boltzmann Law 
12.4.4 Band Emission
12.5 Emission from Real Surfaces 
12.6 Absorption, Reflection, and Transmission by Real Surfaces 
12.6.1 Absorptivity 
12.6.2 Reflectivity 
12.6.3 Transmissivity
12.6.4 Special Considerations 
12.7 Kirchhoff’s Law 
12.8 The Gray Surface 
12.9 Environmental Radiation
12.9.1 Solar Radiation 
12.9.2 The Atmospheric Radiation Balance 
12.9.3 Terrestrial Solar Irradiation 
CHAPTER 13 Radiation Exchange Between Surfaces 
13.1 The View Factor 
13.1.1 The View Factor Integral 
13.1.2 View Factor Relations 
13.2 Blackbody Radiation Exchange 
13.3 Radiation Exchange Between Opaque, Diffuse, Gray Surfaces in
an Enclosure 
13.3.1 Net Radiation Exchange at a Surface 
13.3.2 Radiation Exchange Between Surfaces 
13.3.3 The Two-Surface Enclosure 
13.3.4 Radiation Shields 
13.3.5 The Reradiating Surface 
13.4 Multimode Heat Transfer 
13.5 Implications of the Simplifying Assumptions
13.6 Radiation Exchange with Participating Media 
13.6.1 Volumetric Absorption 
13.6.2 Gaseous Emission and Absorption 
CHAPTER 14 Diffusion Mass Transfer
14.1 Physical Origins and Rate Equations 
14.1.1 Physical Origins 
14.1.2 Mixture Composition 
14.1.3 Fick’s Law of Diffusion 
14.1.4 Mass Diffusivity 
14.2 Mass Transfer in Nonstationary Media 
14.2.1 Absolute and Diffusive Species Fluxes 
14.2.2 Evaporation in a Column 
14.3 The Stationary Medium Approximation 
14.4 Conservation of Species for a Stationary Medium 
14.4.1 Conservation of Species for a Control Volume 
14.4.2 The Mass Diffusion Equation 
14.4.3 Stationary Media with Specified Surface Concentrations 
14.5 Boundary Conditions and Discontinuous Concentrations at Interfaces 
14.5.1 Evaporation and Sublimation 
14.5.2 Solubility of Gases in Liquids and Solids 
14.5.3 Catalytic Surface Reactions 
14.6 Mass Diffusion with Homogeneous Chemical Reactions 
14.7 Transient