Details


1 Signals and Amplifiers 
Introduction 
1.1 Signals 
1.2 Frequency Spectrum of Signals 
1.3 Analog and Digital Signals 
1.4 Amplifiers 
1.4.1 Signal Amplification 
1.4.2 Amplifier Circuit Symbol 
1.4.3 Voltage Gain 
1.4.4 Power Gain and Current Gain 
1.4.5 Expressing Gain in Decibels 
1.4.6 The Amplifier Power Supplies
1.4.7 Amplifier Saturation 
1.4.8 Symbol Convention 
1.5 Circuit Models for Amplifiers 
1.5.1 Voltage Amplifiers 
1.5.2 Cascaded Amplifiers 
1.5.3 Other Amplifier Types 
1.5.4 Relationships between the Four
Amplifier Models 
1.5.5 Determining Ri and Ro 
1.5.6 Unilateral Models 
1.6 Frequency Response of Amplifiers 
1.6.1 Measuring the Amplifier
Frequency Response 
1.6.2 Amplifier Bandwidth 
1.6.3 Evaluating the Frequency
Response of Amplifiers 
1.6.4 Single-Time-Constant Networks 
1.6.5 Classification of Amplifiers Based on
Frequency Response 

2 Operational Amplifiers 
Introduction 
2.1 The Ideal Op Amp 
2.1.1 The Op-Amp Terminals 
2.1.2 Function and Characteristics
of the Ideal Op Amp 
2.1.3 Differential and Common-Mode
Signals 
2.2 The Inverting Configuration 
2.2.1 The Closed-Loop Gain 
2.2.2 Effect of the Finite Open-Loop
Gain 
2.2.3 Input and Output Resistances 
2.2.4 An Important Application—The
Weighted Summer 
2.3 The Noninverting Configuration 
2.3.1 The Closed-Loop Gain 
2.3.2 Effect of Finite Open-Loop
Gain 
2.3.3 Input and Output Resistance 
2.3.4 The Voltage Follower 
2.4 Difference Amplifiers 
2.4.1 A Single-Op-Amp Difference
Amplifier 
2.4.2 A Superior Circuit—The
Instrumentation Amplifier 
2.5 Integrators and Differentiators 
2.5.1 The Inverting Configuration with
General Impedances 
2.5.2 The Inverting Integrator 
2.5.3 The Op-Amp Differentiator 
2.6 DC Imperfections 
2.6.1 Offset Voltage 
2.6.2 Input Bias and Offset Currents 
2.6.3 Effect of VOS and IOS on the Operation
of the Inverting Integrator 
2.7 Effect of Finite Open-Loop Gain and
Bandwidth on Circuit Performance 
2.7.1 Frequency Dependence of the
Open-Loop Gain 
2.7.2 Frequency Response of Closed-Loop
Amplifiers 
2.8 Large-Signal Operation of Op Amps 
2.8.1 Output Voltage Saturation 
2.8.2 Output Current Limits 
2.8.3 Slew Rate 
2.8.4 Full-Power Bandwidth 

3 Semiconductors 
Introduction 
3.1 Intrinsic Semiconductors 
3.2 Doped Semiconductors 
3.3 Current Flow in Semiconductors 
3.3.1 Drift Current 
3.3.2 Diffusion Current 
3.3.3 Relationship between D and μ 
3.4 The pn Junction 
3.4.1 Physical Structure 
3.4.2 Operation with Open-Circuit
Terminals 
3.5 The pn Junction with an Applied
Voltage 
3.5.1 Qualitative Description of Junction
Operation 
3.5.2 The Current–Voltage Relationship of
the Junction 
3.5.3 Reverse Breakdown 
3.6 Capacitive Effects in the pn Junction 
3.6.1 Depletion or Junction
Capacitance 
3.6.2 Diffusion Capacitance 

4 Diodes 
Introduction 
4.1 The Ideal Diode 
4.1.1 Current–Voltage Characteristic 
4.1.2 A Simple Application: The
Rectifier 
4.1.3 Another Application: Diode Logic
Gates 
4.2 Terminal Characteristics of Junction
Diodes 184
4.2.1 The Forward-Bias Region 
4.2.2 The Reverse-Bias Region 
4.2.3 The Breakdown Region 
4.3 Modeling the Diode Forward
Characteristic 
4.3.1 The Exponential Model 
4.3.2 Graphical Analysis Using the
Exponential Model 
4.3.3 Iterative Analysis Using the
Exponential Model 
4.3.4 The Need for Rapid Analysis 
4.3.5 The Constant-Voltage-Drop
Model 
4.3.6 The Ideal-Diode Model 
4.3.7 The Small-Signal Model 
4.3.8 Use of the Diode Forward Drop in
Voltage Regulation 
4.4 Operation in the Reverse Breakdown
Region—Zener Diodes 
4.4.1 Specifying and Modeling the Zener
Diode 
4.4.2 Use of the Zener as a Shunt
Regulator 
4.4.3 Temperature Effects 
4.4.4 A Final Remark 
4.5 Rectifier Circuits 
4.5.1 The Half-Wave Rectifier 
4.5.2 The Full-Wave Rectifier 
4.5.3 The Bridge Rectifier 
4.5.4 The Rectifier with a
Filter Capacitor—The Peak
Rectifier 
4.5.5 Precision Half-Wave Rectifier—The
Superdiode 
4.6 Limiting and Clamping Circuits
4.6.1 Limiter Circuits 
4.6.2 The Clamped Capacitor or DC
Restorer 
4.6.3 The Voltage Doubler 
4.7 Special Diode Types 
4.7.1 The Schottky-Barrier Diode
(SBD) 
4.7.2 Varactors 
4.7.3 Photodiodes 
4.7.4 Light-Emitting Diodes (LEDs) 

5 MOS Field-Effect Transistors
(MOSFETs) 
Introduction 
5.1 Device Structure and Physical
Operation 
5.1.1 Device Structure 
5.1.2 Operation with Zero Gate
Voltage 
5.1.3 Creating a Channel for Current
Flow 
5.1.4 Applying a Small vDS 
5.1.5 Operation as vDS Is Increased 
5.1.6 Operation for vDS ≥ VOV:
Channel Pinch-Off and Current
Saturation 
5.1.7 The p-Channel MOSFET 
5.1.8 Complementary MOS or
CMOS 
5.1.9 Operating the MOS Transistor in the
Subthreshold Region 
5.2 Current–Voltage Characteristics 
5.2.1 Circuit Symbol 
5.2.2 The iD–vDS Characteristics 
5.2.3 The iD–vGS Characteristic 
5.2.4 Finite Output Resistance in
Saturation 
5.2.5 Characteristics of the p-Channel
MOSFET 
5.3 MOSFET Circuits at DC 
5.4 The Body Effect and Other Topics 
5.4.1 The Role of the Substrate—The Body
Effect 
5.4.2 Temperature Effects 
5.4.3 Breakdown and Input
Protection 
5.4.4 Velocity Saturation 
5.4.5 The Depletion-Type MOSFET 

6 Bipolar Junction Transistors
(BJTs) 
Introduction 
6.1 Device Structure and Physical
Operation 
6.1.1 Simplified Structure and Modes of
Operation 
6.1.2 Operation of the npn Transistor in the
Active Mode 
6.1.3 Structure of Actual Transistors 
6.1.4 Operation in the Saturation
Mode 
6.1.5 The pnp Transistor 
6.2 Current–Voltage Characteristics 
6.2.1 Circuit Symbols and Conventions 
6.2.2 Graphical Representation of
Transistor Characteristics 
6.2.3 Dependence of iC on the Collector
Voltage—The Early Effect 
6.2.4 An Alternative Form of the Common-
Emitter Characteristics 
6.3 BJT Circuits at DC 
6.4 Transistor Breakdown and Temperature
Effects 
6.4.1 Transistor Breakdown 
6.4.2 Dependence of β on IC and
Temperature 

7 Transistor Amplifiers 
Introduction 
7.1 Basic Principles 
7.1.1 The Basis for Amplifier
Operation 
7.1.2 Obtaining a Voltage Amplifier 
7.1.3 The Voltage-Transfer Characteristic
(VTC) 
7.1.4 Obtaining Linear Amplification by
Biasing the Transistor 
7.1.5 The Small-Signal Voltage Gain 
7.1.6 Determining the VTC by Graphical
Analysis 
7.1.7 Deciding on a Location for the Bias
Point Q 
7.2 Small-Signal Operation and
Models 
7.2.1 The MOSFET Case 
7.2.2 The BJT Case 
7.2.3 Summary Tables 
7.3 Basic Configurations 
7.3.1 The Three Basic Configurations 
7.3.2 Characterizing Amplifiers 
7.3.3 The Common-Source (CS)
and Common-Emitter (CE)
Amplifiers 
7.3.4 The Common-Source (Common-
Emitter) Amplifier with a Source
(Emitter) Resistance 
7.3.5 The Common-Gate (CG)
and the Common-Base (CB)
Amplifiers 
7.3.6 The Source and Emitter
Followers 
7.3.7 Summary Tables and
Comparisons 
7.3.8 When and How to Include the
Transistor Output Resistance ro 
7.4 Biasing 
7.4.1 The MOSFET Case 
7.4.2 The BJT Case 
7.5 Discrete-Circuit Amplifiers 
7.5.1 A Common-Source (CS)
Amplifier 
7.5.2 A Common-Emitter (CE)
Amplifier 
7.5.3 A Common-Emitter Amplifier with
an Emitter Resistance Re 
7.5.4 A Common-Base (CB)
Amplifier 
7.5.5 An Emitter Follower 
7.5.6 The Amplifier Frequency
Response